發布時間:2023-10-13 15:37:57
序言:作為思想的載體和知識的探索者,寫作是一種獨特的藝術,我們為您準備了不同風格的5篇化學元素的原子質量,期待它們能激發您的靈感。
元素周期表是元素周期律的具體表現形式,形象
>> 關于元素周期表和元素周期律在化學中的應用 元素周期表的現在和未來 元素周期律與元素周期表知識和考點剖析 老婆的“元素周期表” 化學元素周期表中各周期元素個數的確定方法 《元素周期表和元素知識集萃》 元素與元素周期表考點透視 元素周期表與元素命名お 117號元素,化學元素周期表的新成員 點擊元素周期律和元素周期表核心考點 巧用元素周期律和元素周期表規律 元素周期律和元素周期表考點探究 基于“思維導圖”的《元素周期表與周期律》教學オ 元素周期表學習化學的照明燈 從元素周期表的發展史體悟化學哲學 多媒體巧用于化學元素周期表的教學之中 元素周期表與元素周期律命題分析 試論元素周期表的藝術審美性 “探究元素周期表結構”的教學設計 《元素周期表》的創新教學設計 常見問題解答 當前所在位置:l.
[4] 全國科學技術名詞審定委員會.全國科學技術名詞審定委員會公布112號元素的中文名稱.中國科技術語,2011(5).
[5] 張青蓮.原子量的測定和修訂.化學通報,1986(10).
[6] Michael E.Wieser,Tyler B.Coplen.Atomic weights of the elements 2009(IUPAC Technical Report).Pure and Applied Chemistry,2011(2).
[7] 錢秋宇.化學元素的原子量.大學化學,2011(6).
[8] 張青蓮.漫談原子量的質譜法測定.大學化學,1995(6).
[9] 張青蓮,陳剛,肖應凱,祁海平.鋰原子量的校準質譜法測定.科學通報,1991(4).
相對原子質量是指以一個碳負12原子質量的十二分之一作為標準,任何一種原子的平均原子質量跟一個碳負12原子質量的十二分之一的比值,稱為該原子的相對原子質量。硫元素的平均原子質量跟一個碳負12原子質量的十二分之一的比值為30.27,所以硫的相對原子質量為30.27。
硫是一種化學元素,在元素周期表中它的化學符號是S,原子序數是16。硫是一種非常常見的無味無嗅的非金屬,純的硫是黃色的晶體,又稱做硫磺。在自然界中它經常以硫化物或硫酸鹽的形式出現,尤其在火山地區純的硫也在自然界出現。
(來源:文章屋網 )
2、錸是一種化學元素,符號為Re,原子序為75。錸是種銀白色的重金屬,在元素周期表中屬于第6周期過渡金屬。它是地球地殼中最稀有的元素之一,平均含量估值為十億分之一。同時也是熔點和沸點最高的元素之一。錸是鉬和銅提煉過程的副產品。
3、鋨是元素周期表第六周期Ⅷ族元素,鉑族金屬成員之一。元素符號為Os,原子序數76,相對原子質量190.2。屬重鉑族金屬,是目前已知的密度最大的金屬。
4、鉭Ta,金屬元素,主要存在于鉭鐵礦中,同鈮共生。鉭的硬度適中,富有延展性,可以拉成細絲式制薄箔。其熱膨脹系數很小。
【關鍵詞】原子論;原子分子論;比較
一.時代背景比較
19世紀化學發展迅速,法國哲學家伽桑狄受古希臘原子學說的影響,強調原子的大小和形狀的原子論及機械哲學。波義耳有機械論宇宙觀,認為物質和運動是宇宙的基本質料。通過大量化學實驗,他深信萬物是復雜的,不能用亞里士多德的“四元素”或醫藥化學家的“三元素”全部概括,自然界一定存在許多元素,結合生成各種復雜的物質,通過適當的分解方法,最后都變成元素。波義耳明確闡述科學的元素概念,雖有局限性,但與之前元素說完全區別開來,一掃化學研究中的神秘主義,為近代化學的發展指明方向。波義耳指出,實驗和觀察方法是形成科學思維的基礎,化學應當闡明化學過程和物質結構,必須依靠實驗來確定基本規律,他把嚴密的實驗引入化學研究,使化學成為一門實驗科學打下基礎。隨后拉瓦錫確定了質量守恒定律,使化學從定性研究方法和觀點向定量研究發展。化學家們以弄清物質的組成及化學變化中反應物生成物之間量的關系為目的,將化學與數學方法結合,由此建立了一系列基本的化學定律,如當量定律、定比定律等。進一步揭示這些定律之間的內在聯系。約翰.道爾頓研究的最值一提的是關于氣體方面研究所得到的理論以及引發的一系列關于原子的理論。做氣體實驗時遇到了難以用當時已有的理論或者規律解決的問題。首先采用物理方法解釋,解釋不了混合氣體研究內容呈現的規律和結論。其次運用古代原子論也無法解釋。在大量實驗事實基礎上,大膽地猜想并且提出了轟動全世界的“道爾頓原子論”,震撼整個化學界,給化學界開創了新紀元,至今被奉為經典。隨著科學家們研究工作的開展,道爾頓原子論的缺陷日漸凸顯,傳播越發困難。蓋呂薩克由實驗事實及反復驗證提出氣體實驗定律,它的準確性更加說明道爾頓原子論的不足。道爾頓不肯承認蓋呂薩克的說法。兩種理論出現矛盾。阿伏加德羅將兩者理論結合起來稍加發展提出屬于自己的新理論--分子論。它的傳播由于理論的不夠精確性同樣受到阻礙,同時仍然有很多頑固派科學家受舊的理論的束縛,支持道爾頓理論。后來康尼查羅對原子論發展作出突出貢獻,獨辟蹊徑地研究化學史來論證原子- 分子論,體現了邏輯和歷史的統一,更加準確和有說服力。畢竟頑固派勢力強大,傳播受阻,當時的科學技術也無法證明其準確性。在新一代科學家努力下,原子-分子論才為人接受。繼而才發展到現代原子-分子理論。
二.研究方法的比較
道爾頓揚棄以古希臘科學家德謨克利特為代表的古代原子論研究氣體物理性質和氣象研究時大膽假設出原子論內容。曾假定各種物質包括氣體在內都是由同樣大小的微粒構成。進而研究空氣的組成、性質和混合氣體的擴散與壓力。為了解開混合氣體的組成和性質之謎,道爾頓日益重視氣體和混合氣體的研究,得出結論:各地大氣都是由氧、氮、二氧化碳、水蒸氣四種主要成分的無數微粒或終極質點混合而成。而氣體的混合是因為相同微粒之間產生排斥擴散。“混合氣體的總的壓力等于各組分氣體在同樣條件下各自占有某容器時的壓力的總的加和”的氣體分壓定律。某種氣體在容器里存在的狀態與其他氣體的存在無關。若用氣體具有微粒的結構去解釋很簡單,由此推論出物質的微粒結構即終極質點的存在是不容置疑的,由于太小把顯微鏡改進后也未必能看見。他選擇古希臘哲學中的“原子”來稱呼這種微粒。空氣就是由不同種類、不同重量的原子混合構成的,確認原子的客觀存在。而如果原子確實存在,那么根據原子理論來解釋物質的基本性質和各種規律,就需要把對原子的認識從定性上升到定量的階段。道爾頓的首篇化學論文《關于構成大氣的幾種氣體或彈性流體的比例的實驗研究》從氧和亞硝氣(即氧化氮)的結合去探討原子之間是怎樣相互去化合的,并從中發現這幾種原子間的化學結合存在著某種量的關系。道爾頓在分析甲烷和乙烯兩種不同氣體的組成時,發現它們都含有碳、氫這兩種元素,在這兩種氣體中,當含炭量相同時,甲烷中的含氫量恰好是乙烯中含氫量的2倍。類似的情況普遍存在:甲乙兩種元素能夠相互化合且生成不同的化合物,這些化合物中,實驗表明跟一定重量的甲元素相化合的乙元素的質量互成簡單的整數比。于是,發現倍比定律。從原子的觀點來看,某元素不僅可以和另一元素的一個原子進行化合,也可以和兩個或三個原子化合。得到的結果與一定質量的某元素相互化合的另一元素的質量就必然成簡單的整數比:1:2、1:3或2:3等。在原子觀點的啟迪下,道爾頓發現并解釋了倍比定律,同時倍比定律的發現又成為他確立原子論的重要奠基石。道爾頓為了建立更加完善的原子論觀點和驗證氣象研究方面特別是大氣性質方面的成果得出的結論:“不同元素的原子重量和大小是不一樣的”。他聯想到了倍比定律及德國化學家里希特的當量定律,既然原子按一定的簡單比例關系相互化合,若對一些復雜的化合物進行分析,把其中最輕的元素的重量百分數同其他的元素的重量百分數進行比較,就可得出一種元素的原子相對于最輕元素的原子的重量倍數,從物質的相對重量,推出物質的原子的相對重量即我們現在所說的相對原子質量。盡管由于他對一些復雜原子(分子)的錯誤認識及當時條件的限制,他測定的原子量誤差很大,但人們對物質結構的一個基本層次——原子的的認識真正建立在科學的基礎上了。受當時科技水平的限制,他的理論偏于理論性,無法用科學儀器檢測來驗證其準確性。但道爾頓原子論關于原子的描述和原子量的計算工作是項意義深遠的具有開創性的工作,第一次把純屬猜測的原子概念變成一種具有一定質量的、可以由實驗來測定的物質實體。1808年,法國化學家蓋- 呂薩克通過多次實驗結果及幾番論證發現并提出氣體實驗定律,即“ 各種氣體在相互起化學作用時常以簡單的體積比相結合”。在此同時還發現:不但氣體間的化合反應是以簡單體積比的關系相作用,而且在化合后,氣體體積的改變與發生反應的氣體體積間也有明了的關系。由此他大膽地提出推論:“在同溫同壓下相同體積的不同氣體都含有相同數目的原子”。這個推論表面上似乎是支持道爾頓的原子論,實際上卻把道爾頓原子論推向了新的困境。阿伏加德羅在道爾頓基礎上結合蓋-呂薩克的理論假說提出了新的學說分子論,也由于理論的局限性遇到極大的困境。1811年,他發現阿伏伽德羅定律,即在標準狀態下(0℃,1個標準大氣壓,通常是1.01325×10^5Pa),相同體積的任何氣體都含有相同數目的氣體分子,與氣體內部化學組成和物理性質無關。它對化學的發展特別是原子質量的測定工作起了重大的推動作用。此后,又發現阿伏伽德羅常數,即1mol任何物質的分子數都約為6.023×10^23個分子。當時沒有引起化學家們注意,以致在原子與分子、原子質量與分子質量的概念上繼續混亂了近50年。直到他死后2年,科學家康尼查羅指出他應用了阿伏伽德羅理論可怡解決當時化學中的很多問題。在1860年在卡爾斯魯厄重新宣讀了阿伏伽德羅的論文,之后阿伏伽德羅的理論才被許多化學家所接受。在1871年,V.邁爾應用阿伏伽德羅的理論從理論上成功地解釋了蒸氣密度的特性問題。后來康尼查羅是通過研究化學史來論證原子- 分子理論的。解決了道爾頓原子論無法說明的領域。也將原子論發展到原子-分子理論。沖破了阿伏伽德羅理論的困境。但他也始終是把原子分子理論的微觀起點停留在了原子層面,沒能更推進一步。隨著科技的發展,原子結構模型猜想也不斷地演變:1904年湯姆生提出原子模型“葡萄干面包式”,1906年-1908年盧瑟福通過α粒子散射得出類似太陽系的原子模型,1913年玻爾提出了模型原子外電子做圓周運動,1924年法國科學家德布羅意提出光粒二相性再由薛定諤等人一起提出和發展量子力學模型,其中倫琴射線的發現,α粒子衍射法的運用,原子研究進入了更加微觀的結構,質子,中子,電子相繼發現。海森堡,海特勒,倫敦等科學家也都作出了巨大貢獻,又一原子論新紀元在化學史上拉開帷幕。
三.具體內容的比較
道爾頓原子論:1.元素是由非常微小、不可再分的微粒即原子組成,原子在所有化學變化中不可以再分,并且保持著自己的獨特性質。2.同一種元素的所有原子的質量、性質都是完全相同的。不同元素的原子質量和性質也是各不相同的,原子的質量是每一種元素的基本特征之一。3.不同的元素在化合時,原子之間以簡單整數比的方式結合。被后人發現存在缺陷性,譬如說原子可以再分,分為質子,中子,電子等,同一種元素的原子有的性質不一樣,如C-12有同素異形體金剛石,石墨而C-13則應用在同位素示蹤,跟蹤化學反應等運用在不同的領域。阿伏加德羅在結合道爾頓和蓋呂薩克的理論基礎上他提出了自己的假說,而原子-分子論的代表康尼查羅在阿伏加德羅假說的基礎上,重申求物質分子量的一個實用的方法--蒸氣密度法。他在原子學說的基礎上,突破性地提出了從分子量求原子量的方法,后被稱為康尼查羅法。他指出某些金屬和非金屬的分子量是不可能求得的,道明阿伏加德羅假說與杜隆- 培蒂定律的聯系,還指出原子量和當量的區別和聯系。康尼查羅論證了無機化學和有機化學的同一性。確立了書寫化學式的具體原則。可謂是將原子論細化到具體。更加準確也更加實用,被更多的人們所接受,繼而傳播到全世界。康尼查羅對化學發展做出的貢獻遠不止在原子論上,是多方面的涉及。如今科技日新月異,從原子核電子的發現到現今夸克等更小為力的發現都是現代原子-分子論的集體發展。而道爾頓原子論與現代原子分子理論的關系凸顯,道爾頓原子論是大基礎,后者是順科學傳播受阻而發展起來的。所以道爾頓原子論和現代原子分子論兩者是密切關聯,發展的關系,是辯證統一的哲學關系。
四.真理性及缺陷性比較
道爾頓原子論是建立在拉瓦錫單質論基礎上,在已發現氧、氫、氮等實際存在的原子之后提出的。在此之前還沒有確立科學的單質論,只認識到空氣原子,水原子等非實際存在原子,而道爾頓的原子論是直接結合定比定律和倍比定律等實驗法則而產生的,導入定量描述的原子量概念,是原子觀念和實驗事實的結合,是科學的原子論學說。道爾頓的原子論在理論上解釋了一些化學基本定律和化學實驗事實,揭示了質量守恒定律、當量定律、定比定律、倍比定律的內在聯系,使化學由定性描述發展到了定量描述,使它成為可驗證的學說。道爾頓的原子論揭示了質量是化學元素基本特征的思想,是不自覺地運用量轉化為質的規律,而后導致化學元素周期律的發現。各種化學現象、化學元素以及化學定律之間存在著內在的聯系,這種聯系為原子論所揭示,對當時占統治地位的形而上學的自然觀又是一次有力的沖擊,因而原子論的建立不僅在科學上,而且在哲學上也具有重大意義。道爾頓原子論是在化學史上繼往開來的嶄新一頁。所提出的新概念和新思想,成為當時化學家們解決實際問題的重要理論。首先用它清晰地解釋了當時正被運用的定比定律、當量定律。同時這一理論使眾多的化學現象得到了統一的解釋。特別是原子量的引入,原子質量是化學元素基本特征的思想,引導著化學家把定量研究與定性研究結合起來,把化學研究提高到新的水平。從此化學脫去了思辨哲學的外衣,而成為自然科學的重要學科。事實證明,如果沒有原子論,化學仍將仍舊是一堆雜論無章的觀察材料和實驗的配料記錄。道爾頓的原子論使人們沖破長期束縛思想的經院哲學、機械論哲學,不僅把化學引上科學之路,而且由搜集、記錄材料為特征的經驗描述階段逐步過渡到整理材料、找出材料間內在聯系的理論概括階段,它為化學開辟了新時代。革命導師恩格斯評價說,“在化學中,特別感謝道爾頓發現了原子論,已達到的各種結果都具有了秩序和相對的可靠性,已經能夠有系統地,差不多是有計劃地向還沒有被征服的領域進攻,可以和計劃周密地圍攻一個堡壘相比。”至今科學家們受到道爾頓原子論的啟發也很大。而原子-分子論是在它上面發展起來的也作出了巨大貢獻,彌補了道爾頓原子論的缺陷,是繼承和發揚道爾頓原子論,意義深刻。目前仍然在快速發展之中。“夸克”的發現意味著原子論面對更多新的挑戰。未來原子論的發展亟待當今科學家去思考與探究。歷史的車輪永遠會往前滾去,發展是必然的趨勢。
參考文獻:
[1]張家治:《化學史教程》,太原,山西教育出版社,2006年版
[2]盛根玉:《現代化學進展》,上海師大人文學院,《上海師大學報》
[3]王峰,《道爾頓與近代化學原子論》,武大人文學院,《湖北師范學院學報》2003.3
鋁相對原子質量:26.981539。鋁元素在地殼中的含量僅次于氧和硅,居第三位,是地殼中含量最豐富的金屬元素。航空、建筑、汽車三大重要工業的發展,要求材料特性具有鋁及其合金的獨特性質,這就大大有利于這種新金屬鋁的生產和應用。應用極為廣泛。
化學元素(Chemicalelement)就是具有相同的核電荷數(核內質子數)的一類原子的總稱。從哲學角度解析,元素是原子的電子數目發生量變而導致質變的結果。
(來源:文章屋網 )